These findings provide the reference to a preferable choice of the curcumin formulation and contribute to therapeutic application in clinical research.
Background
Oleanolic acid (OA) has multiple pharmaceutical applications including anti-inflammatory activity, but low permeability of the molecule limits its widespread use.
Methods
A cubic liquid crystalline nanoparticle (LCNP)-based gel was prepared as a potential topical delivery system for OA. The LCNP-based gel was optimized using rheological, drug release kinetic, and ex vivo permeation studies.
Results
The studies showed that the OA was trapped in the interior of the LCNP with a crystal form of Pn3m space. The optimized LCNP formulation performed well using in vitro release studies for up to 12 h (85.49 ± 0.21%). Ex vivo permeation studies showed that the LCNP-based gel formulation was superior to a standard gel formulation. The r2 value from the Peppas equation indicated good linearity, but showed irregular (non-Fickian) diffusion, suggesting that drug release was controlled by multiple processes.
Conclusions
In this study, OA-loaded LCNPs were prepared by the precursor method, resulting in a well-characterized OA-LCNP gel preparation. The gel was shown to be effective in a rodent carrageenan-induced hind paw inflammation model with sustained efficacy after a single application.
Introduction: Oleanolic acid (OA) has been shown to be useful for the treatment of mental disorders. Methods: In this study, we investigated the effects of OA in animal models of spontaneous withdrawal and naloxone-precipitated withdrawal and evaluated the effects of OA on the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP). Results: OA significantly improved symptoms of withdrawal, and significantly reduced the acquisition and reinstatement of morphine-induced conditioned place preference. Moreover, OA significantly reduced the serum content of 5-hydroxy tryptamine (5-HT) and dopamine (DA) in a dose-dependent manner, and reduced norepinephrine (NE) and 5-HT content in the frontal cortex (PFC), while significantly increasing endorphin content in rats. OA also significantly reduced serum DA content in mice.
Conclusion:These results indicate that OA can improve the withdrawal symptoms of rats and mice by regulating the DA system and suggest that OA may be useful in treatment of morphine addiction.
Background: Oleanolic acid (OA) has multiple pharmaceutical applications, but low permeability of the molecule limits its widespread use. Methods:A cubic liquid crystalline nanoparticle (LCNP)-based gel was prepared as a potential topical delivery system for OA. The LCNP-based gel was optimized using rheological, drug release kinetic, and ex vivo permeation studies.Results: The studies showed that the OA was trapped in the interior of the LCNP with a crystal form of Pn3m space. The optimized LCNP formulation performed well using in vitro release studies for up to 12 h (85.49 ± 0.21 %). Ex vivo permeation studies showed that the LCNP-based gel formulation was superior to a standard gel formulation. The r2 value from the Peppas equation indicated good linearity, but showed irregular (non-Fickian) diffusion, suggesting that drug release was controlled by multiple processes.Conclusions: In this study, OA-loaded LCNPs were prepared by the precursor method, resulting in a well-characterized OA-LCNP gel preparation. The gel was shown to be effective in a rodent carrageenan-induced hind paw inflammation model with sustained efficacy after a single application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.