We study chemical-potential dependence of confinement and mass gap in QCD with adjoint fermions in spacetime with one spatial compact direction. By calculating the one-loop effective potential for the Wilson line in the presence of chemical potential, we show that a center-symmetric phase and a center-broken phase alternate when the chemical potential in unit of the compactification scale is increased. In the center-symmetric phase we use semiclassical methods to show that photons in the magnetic bion plasma acquire a mass gap that grows with the chemical potential as a result of anisotropic interactions between monopole-instantons. For the neutral fermionic sector which remains gapless perturbatively, there are two possibilities at non-perturbative level. Either to remain gapless (unbroken global symmetry), or to undergo a novel superfluid transition through a fourfermion interaction (broken global symmetry). If the latter is the case, this leads to an energy gap of quarks proportional to a new nonperturbative scale L −1 exp[−1 (g 4 µL)], where L denotes the circumference of S 1 , the low-energy is described as a Nambu-Goldstone mode associated with the baryon number, and there exists a new type of BEC-BCS crossover of the diquark pairing as a function of the compactification scale at small chemical potential.