Mimicking the appearance of the real world is a longstanding goal of computer graphics, with several important applications in the feature-film, architecture and medical industries. Images with well-designed shading are an important tool for conveying information about the world, be it the shape and function of a CAD model, or the mood of a movie sequence. However, authoring this content is often a tedious task, even if undertaken by groups of highly-trained and experienced artists. Unsurprisingly, numerous methods to facilitate and accelerate this appearance editing task have been proposed, enabling the editing of scene objects' appearances, lighting, and materials, as well as entailing the introduction of new interaction paradigms and specialized preview rendering techniques. In this STAR we provide a comprehensive survey of artistic appearance, lighting, and material editing approaches. We organize this complex and active research area in a structure tailored to academic researchers, graduate students, and industry professionals alike. In addition to editing approaches, we discuss how user interaction paradigms and rendering backends combine to form usable systems for appearance editing. We conclude with a discussion of open problems and challenges to motivate and guide future research.