The use of self-assembled block copolymers (BCPs) for the fabrication of electronic and energy devices has received a tremendous amount of attention as a non-traditional approach to patterning integrated circuit elements at nanometer dimensions and densities inaccessible to traditional lithography techniques. The exquisite control over the dimensional features of the self-assembled nanostructures (i.e., shape, size, and periodicity) is one of the most attractive properties of BCP self-assembly. Harmonic spatial arrangement of the self-assembled nanoelements at desired positions on the chip may offer a new strategy for the fabrication of electronic and energy devices. Several recent reports show the great promise in using BCP self-assembly for practical applications of electronic and energy devices, leading to substantial enhancements of the device performance. Recent progress is summarized here, with regard to the performance enhancements of non-volatile memory, electrical sensor, and energy devices enabled by directed BCP self-assembly.