Abstract. In the present study a Large Eddy Simulation and Filtered Density Function model is applied to three premixed piloted turbulent methane flames at different Reynolds Numbers using the Eulerian stochastic fields approach. The model is able to reproduce the flame structure and flow characteristics with a low number of fields (between 4 and 16 fields). The results show a good agreement with experimental data with the same closures employed in non-premixed combustion without any adjustment for combustion regime. The effect of heat release on the flow field is captured correctly. A wide range of sensitivity studies is carried out, including the number of fields, the chemical mechanism, differential diffusion effects and micro-mixing closures. The present work shows that premixed combustion (at least in the conditions under study) can be modelled using LES-PDF methods.. Finally, the ability of the model to predict flame quenching is studied. The model can accurate capture the conditions at which combustion is not sustainable and large pockets of extinction appear.