The increasing need to demonstrate the correctness of computer simulations has highlighted the importance of benchmarks. We define in this paper a representative simulation case to study low-temperature partially-magnetized plasmas. Seven independently developed Particle-In-Cell codes have simulated this benchmark case, with the same specified conditions. The characteristics of the codes used, such as implementation details or computing times and resources, are given. First, we compare at steady-state the time-averaged axial profiles of three main discharge parameters (axial electric field, ion density and electron temperature). We show that the results obtained exhibit a very good agreement within 5% between all the codes. As ExB discharges are known to cause instabilities propagating in the direction of electron drift, an analysis of these instabilities is then performed and a similar behaviour is retrieved between all the codes. A particular attention has been paid to the numerical convergence by varying the number of macroparticles per cell and we show that the chosen benchmark case displays a good convergence. Detailed outputs are given in the supplementary data, to be used by other similar codes in the perspective of code verification. 2D axial-azimuthal Particle-In-Cell benchmark for low-temperature partially ...
International audienceThis article presents a comparison between experiments and Large-Eddy Simulation (LES) of a spark ignition engine on two operating points: a stable one characterized by low cycle-to-cycle variations (CCV) and an unstable one with high CCV. In order to match the experimental cycle sample, 75 full cycles (with combustion) are computed by LES. LES results are compared with experiments by means of pressure signals in the intake and exhaust ducts, in-cylinder pressure, chemiluminescence and OH Planar Laser Induced Fluorescence (PLIF). Results show that LES is able to: (1) reproduce the flame behavior in both cases (low and high CCV) in terms of position, shape and timing; (2) distinguish a stable point from an unstable one; (3) predict quantitatively the CCV levels of the two fired operating points. For the unstable case, part of the observed CCV is due to incomplete combustion. The results are then used to analyze the incomplete combustion phenomenon which occurs for some cycles of the unstable point and propose modification of the spark location to control CCV
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.