Nitrogen (N) is a key element for the production of potato. The N uptake efficiency, N use efficiency and increased N utilization efficiency can be decreased by N deficiency treatment. We performed this study to investigate the association between transcriptomic profiles and the efficiencies of N in potato. Potato cultivars “Yanshu 4” (short for Y), “Xiabodi” (cv. Shepody, short for X) and “Chunshu 4” (short for C) were treated with sufficient N fertilizer and deficient N fertilizer. Then, the growth parameters and tuber yield were recorded; the contents of soluble sugar and protein were measured; and the activities of enzymes were detected. Leaf and root transcriptomes were analyzed and differentially expressed genes (DEGs) in response to N deficiency were identified. The results showed that N deficiency decreased the nitrate reductase (NR), glutamine synthetase (GS) and root activity. Most of the DEGs between N-treated and N-deficiency participate the processes of transport, nitrate transport, nitrogen compound transport and N metabolism in C and Y, not in X, indicating the cultivar-dependent response to N deficiency. DEGs like glutamate dehydrogenase (
StGDH)
, glutamine synthetase (
StGS)
and carbonic anhydrase (
StCA)
play key roles in these processes mentioned above. DEGs related to N metabolism showed a close relationship with the N utilization efficiency (UTE), but not with N use efficiency (NUE). The Major Facilitator Superfamily (MFS) members, like nitrate transporter 2.4 (
StNRT2
.
4)
, 2.5 (
StNRT2
.
5)
and 2.7 (
StNRT2
.
7)
, were mainly enriched in the processes associated with response to stresses and defense, indicating that N deficiency induced stresses in all cultivars.