The majority of foodborne outbreaks in the United States associated with the consumption of leafy greens contaminated with Escherichia coli O157:H7 have been reported during the period of July to November. A dynamic system model consisting of subsystems and inputs to the system (soil, irrigation, cattle, wild pig, and rainfall) simulating a hypothetical farm was developed. The model assumed two crops of lettuce in a year and simulated planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. As predicted by the baseline model for crops harvested in different months from conventional fields, an estimated 13 out of 257 (5.05%) first crops harvested in July would have at least one plant with at least 1 CFU of E. coli O157:H7. Predictions indicate that no first crops would be contaminated with at least 1 CFU of E. coli O157:H7 for other months (April to June). The maximum E. coli O157:H7 concentration in a plant was higher in the second crop (27.10 CFU) than in the first crop (9.82 CFU). For the second crop, the probabilities of having at least one plant with at least 1 CFU of E. coli O157:H7 in a crop were predicted as 15/228 (6.6%), 5/333 (1.5%), 14/324 (4.3%), and 6/115 (5.2%) in August, September, October, and November, respectively. For organic fields, the probabilities of having at least one plant with Ն1 CFU of E. coli O157:H7 in a crop (3.45%) were predicted to be higher than those for the conventional fields (2.15%).IMPORTANCE This study is the first attempt toward developing a mathematical system model to understand the pathway of E. coli O157:H7 in the production of leafy greens. Results of the presented system model indicate that the seasonality of outbreaks of E. coli O157:H7-associated contamination of leafy greens was in good agreement with the prevalence of this pathogen in cattle and wild pig feces in a major leafy greens-producing region in California. On the basis of comparisons among the results of different scenarios, it can be recommended that the concentration of E. coli O157:H7 in leafy greens can be reduced considerably if contamination of soil with wild pig and cattle feces is mitigated.KEYWORDS leafy greens, Escherichia coli O157:H7, outbreaks, system model, animal feces T he "Dietary Guidelines for Americans, 2010" recommends that adults and children eat a variety of fruits and vegetables in order to lower the risk of chronic diseases and to achieve and maintain a healthy weight (1, 2). While leafy vegetables are an important part of a healthy and nutritious diet, they are usually consumed raw; thus, any leafy vegetables with contaminated pathogens have the potential to cause food-