A novel robust integral linear quadratic Gaussian (ILQG) controller is presented in this paper to control the voltage of islanded microgrid and improves its transient response. Microgrid is a small grid that consists of number of distributed generator units, power-electronic components with inductor-capacitor (LC) filters and loads. The loads are parametrically uncertain and unknown that produces the voltage or power oscillation. The ILQG controller is capable to compensate for the voltage oscillation and exhibits the tracking of grid voltage against the different load dynamics. The design of ILQG controller is carried out by augmenting the plant dynamics with an integrator. The robustness of the ILQG controller is studied by considering a number of uncertainties within the plant model. The performance of ILQG controller is compared with linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controller in terms of rise time, settling time, bandwidth and tracking error. The comparison results ensure the high bandwidth and tracking performance of ILQG controller as compared to other controllers. KEYWORDS integral linear quadric Gaussian control, microgrid, voltage control