2010
DOI: 10.1063/1.3391160
|View full text |Cite
|
Sign up to set email alerts
|

Transition paths in molecules at finite temperature

Abstract: In the zero temperature limit, it is well known that in systems evolving via Brownian dynamics, the most likely transition path between reactant and product may be found as a minimizer of the Freidlin-Wentzell action functional. An analog for finite temperature transitions is given by the Onsager-Machlup functional. The purpose of this work is to investigate properties of OnsagerMachlup minimizers. We study transition paths for thermally activated molecules governed by the Langevin equation in the overdamped l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

5
30
0

Year Published

2012
2012
2020
2020

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 36 publications
(35 citation statements)
references
References 24 publications
5
30
0
Order By: Relevance
“…In summary: We confirm and amplify observations summarized by Pinski and Stuart 33 that minimizing the Onsager-Machlup (OM) functional requires optimized estimates of both the time taken for the transition and the energy difference between initial and final states, and that as such paths can involve non-physical features, they must be treated with caution, and hence validated by other types of information, which here include comparing different algorithms and molecular systems.These difficulties notwithstanding, distinct algorithms including PATH 18 and ANMPathway 8 produce quite similar transition-state structures to that generated using the temperature-dependent string method, 31 which can be considered a “gold standard.”The transition state structure obtained by modifying the PATH algorithm to eliminate non-physical invariant portions of the trajectory coincides closely with the saddle point in the free energy surface simulated using Discrete Molecular Dynamics (DMD) 34,42

Cooperative repacking of aromatic side-chains is a common feature of transition state structures for domain rearrangements in three unrelated protein systems.

…”
Section: Introductionsupporting
confidence: 91%
See 3 more Smart Citations
“…In summary: We confirm and amplify observations summarized by Pinski and Stuart 33 that minimizing the Onsager-Machlup (OM) functional requires optimized estimates of both the time taken for the transition and the energy difference between initial and final states, and that as such paths can involve non-physical features, they must be treated with caution, and hence validated by other types of information, which here include comparing different algorithms and molecular systems.These difficulties notwithstanding, distinct algorithms including PATH 18 and ANMPathway 8 produce quite similar transition-state structures to that generated using the temperature-dependent string method, 31 which can be considered a “gold standard.”The transition state structure obtained by modifying the PATH algorithm to eliminate non-physical invariant portions of the trajectory coincides closely with the saddle point in the free energy surface simulated using Discrete Molecular Dynamics (DMD) 34,42

Cooperative repacking of aromatic side-chains is a common feature of transition state structures for domain rearrangements in three unrelated protein systems.

…”
Section: Introductionsupporting
confidence: 91%
“…We confirm and amplify observations summarized by Pinski and Stuart 33 that minimizing the Onsager-Machlup (OM) functional requires optimized estimates of both the time taken for the transition and the energy difference between initial and final states, and that as such paths can involve non-physical features, they must be treated with caution, and hence validated by other types of information, which here include comparing different algorithms and molecular systems.…”
Section: Introductionsupporting
confidence: 80%
See 2 more Smart Citations
“…Then, using Euler's method for (6), it follows that (9) is basically the likelihood ratio between the time-discrete path densities of (6b) and (6a). Another route to the same result is by using the Onsager-Machlup functional [15] for…”
Section: Remarkmentioning
confidence: 72%