Abstract. Electron transport through disordered quasi one-dimensional quantum systems is studied. Decoherence is taken into account by a spatial distribution of virtual reservoirs, which represent local interactions of the conduction electrons with their environment. We show that the decoherence distribution has observable effects on the transport. If the decoherence reservoirs are distributed randomly without spatial correlations, a minimal degree of decoherence is necessary to obtain Ohmic conduction. Below this threshold the system is localized and thus, a decoherence driven metal-insulator transition is found. In contrast, for homogenously distributed decoherence, any finite degree of decoherence is sufficient to destroy localization. Thus, the presence or absence of localization in a disordered one-dimensional system may give important insight about how the electron phase is randomized.