A key insight from recent studies is that noise, such as dephasing, can improve the efficiency of quantum transport by suppressing coherent single-particle interference effects. However, it is not yet clear whether dephasing can enhance transport in an interacting many-body system. Here we address this question by analysing the transport properties of a boundary driven spinless fermion chain with nearest-neighbour interactions subject to bulk dephasing. The many-body non-equilibrium stationary state is determined using large scale matrix product simulations of the corresponding quantum master equation. We find dephasing enhanced transport only in the strongly interacting regime, where it is shown to induce incoherent transitions bridging the gap between bound dark-states and bands of mobile eigenstates. The generic nature of the transport enhancement is illustrated by a simple toy model, which contains the basic elements required for its emergence. Surprisingly the effect is significant even in the linear response regime of the full system, and it is predicted to exist for any large and finite chain. The response of the system to dephasing also establishes a signature of an underlying nonequilibrium phase transition between regimes of transport degradation and enhancement. The existence of this transition is shown not to depend on the integrability of the model considered. As a result dephasing enhanced transport is expected to persist in more realistic non-equilibrium strongly-correlated systems.
In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energydissipative) processes in different parameter regimes of the system. The nonequilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly-interacting regime, as evidenced by the heat-current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly-interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the stronglyinteracting regime, the heat current can be significantly enhanced by dephasing for systems of small size.
In the present work we investigate the existence of multiple nonequilibrium steady states in a coherently-driven XY lattice of dissipative two-level systems. A commonly-used mean-field ansatz, in which spatial correlations are neglected, predicts a bistable behavior with a sharp shift between low-and high-density states. In contrast one-dimensional matrix product methods reveal these effects to be artifacts of the mean-field approach, with both disappearing once correlations are taken fully into account. Instead a bunching-antibunching transition emerges. This indicates that alternative approaches should be considered for higher spatial dimensions, where classical simulations are currently infeasible. Thus we propose a circuit QED quantum simulator implementable with current technology, to enable an experimental investigation of the model considered.
In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the system, we calculate its steady state in the long-time limit. We start by discussing the energy transport supported by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite. Subsequently we examine the reduced density operators of neighboring sites and find that for large systems they are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion and thermalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.