2010
DOI: 10.1016/j.aml.2010.02.008
|View full text |Cite
|
Sign up to set email alerts
|

Traveling wave solutions of nonlinear partial differential equations

Abstract: We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakon… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
2

Year Published

2010
2010
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 21 publications
(10 citation statements)
references
References 14 publications
0
8
0
2
Order By: Relevance
“…In recent years, various direct methods were proposed to find exact solutions of nonlinear partial differential equations (NLPDEs) in general. These methods include, Bäcklund transformation (BT) [5], (G /G)-expansion method [6,7], auxiliary equation method [8][9][10][11][12], exponential function method [13,14], homogeneous balance (HB) method [15][16][17], variational iteration method [18][19][20], factorization method [21], algebraic method [22] and Weiss approach [23]. Whereas some of these methods are of general nature in the sense that they can be employed to any NLPDE, others are equation-specific.…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, various direct methods were proposed to find exact solutions of nonlinear partial differential equations (NLPDEs) in general. These methods include, Bäcklund transformation (BT) [5], (G /G)-expansion method [6,7], auxiliary equation method [8][9][10][11][12], exponential function method [13,14], homogeneous balance (HB) method [15][16][17], variational iteration method [18][19][20], factorization method [21], algebraic method [22] and Weiss approach [23]. Whereas some of these methods are of general nature in the sense that they can be employed to any NLPDE, others are equation-specific.…”
Section: Introductionmentioning
confidence: 99%
“…É notório salientar a eficácia de tal método que possibilita uma descrição analítica de uma ampla classe de potenciais, por meio de sucessivas deformações, levando em conta o ajuste adequado dos parâmetros de uma função deformadora conveniente. Suas aplicações de estendem até a resolução de equações não lineares, que descrevem fenômenos ondulatórios como a equação KdV [19,20]. Inicialmente vamos estabelecer a relação entre o potencial do modelo primitivo e o potencial do modelo obtido através da deformação.…”
Section: O Método De Deformação Na Teoria De Camposunclassified
“…Portanto, se a solução onda viajante do sistema (52) é conhecida, podemos obter através do mapa inverso a solução do sistema (62) [19,20]. É um método simples e direto para encontrar soluções tipo onda viajente em sistemas dinâmicos integráveis não-lineares, quando comparado aos demais métodos encontrados na literatura como o método do espalhamento inverso [38], metódo bilinear de Hirota [45], Representação de Lax [46], entre outros.…”
Section: Sistemas Integráveis: Equação Kdvunclassified
“…The procedure is simple, inspired on the approach introduced in Ref. [26], and it works for the construction of polynomial and non-polynomial models.…”
Section: Final Commentsmentioning
confidence: 99%
“…Graphics of the potential V (φ, χ) with r = 1/4 and orbits of the kinks(26) and(27) in the internal plane.…”
mentioning
confidence: 99%