The T-cell acute lymphoblastic leukemia (T-ALL) is a kind of hematological malignancy in children. Despite the significant improvement in the cure rate of T-ALL upon treatment with chemotherapy regimens, steroids, and allotransplantation there are relapses. This study focuses on the tumor-specific therapeutic vaccines derived from the induced pluripotent stem cells (iPSC) to address the issue of T-ALL recurrence. Patient-derived tumor cells and healthy donor cells were reprogrammed into the iPSCs and the RNA-seq data of the T-ALL-iPSCs and H-iPSCs were analyzed. In vitro, the whole cell lysate antigens of iPSCs were prepared to induce the dendritic cells (DC) maturation, which in turn stimulated the tumor-specific T cells to kill the T-ALL tumor cells (Jurkat, CCRF-CEM, MOLT-4). The cytotoxic T lymphocyte (CTL) stimulated by the DC-loaded T-ALL-iPSC-derived antigens showed specific cytotoxicity against the T-ALL cells in vitro. In conclusion, the T-ALL-iPSC-based therapeutic cancer vaccine can elicit a specific anti-tumor effect on T-ALL.