Chrysanthemum zawadskii var. latilobum (CZ) has been used as a traditional medicine in Asian countries for the treatment of inflammatory diseases. Recently, CZ extract was shown to inhibit differentiation of osteoclasts and provide protection against rheumatoid arthritis. The aim of this study was to investigate the molecular mechanisms of BST106, the ethanol extract of CZ, for cartilage protection in monosodium iodoacetate (MIA)-induced osteoarthritis (OA), particularly focusing on apoptosis and autophagy. BST106 (50, 100, and 200 mg/kg) was orally administered once daily to MIA-induced OA rats. Swelling, limping, roentgenography, and histomorphological changes were assessed 28 d after MIA injection. Biochemical parameters for matrix metalloproteinase (MMP), apoptosis, and autophagy were also assessed. BST106 ameliorated the severity of swelling and limping after MIA injection. Roentgenographic and histomorphological examinations revealed that BST106 reduced MIA-induced cartilage damage. BST106 decreased MIA-induced increases in MMP-2 and MMP-13 mRNA levels. Increased levels of serum cartilage oligomeric matrix protein and glycosaminoglycan release were attenuated by BST106. Furthermore, BST106 suppressed the protein expression of proapoptotic molecules and increased the protein expression of autophagosome- and autolysosome-related molecules. These findings indicate that BST106 protects against OA-induced cartilage damage by inhibition of the apoptotic pathway and restoration of impaired autophagic flux.