@ERSpublicationsThe risk stratification strategy proposed by the current European PH guidelines allows accurate survival prediction http://ow.ly/KsWk30c46nK ABSTRACT The 2015 European pulmonary hypertension (PH) guidelines propose a risk stratification strategy for patients with pulmonary arterial hypertension (PAH). Low-, intermediate-and high-risk strata are defined by estimated 1-year mortality risks of <5%, 5-10% and >10%, respectively. This risk assessment strategy awaits validation.We analysed data from patients with newly diagnosed PAH enrolled into COMPERA (Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension), a European-based PH registry. An abbreviated version of the risk assessment strategy proposed by the European PH guidelines was applied, using the following variables: World Health Organization functional class, 6-min walking distance, brain natriuretic peptide or its N-terminal fragment, right atrial pressure, cardiac index and mixed venous oxygen saturation.Data from 1588 patients were analysed. Mortality rates were significantly different between the three risk strata ( p<0.001 for all comparisons). In the entire patient population, the observed mortality rates 1 year after diagnosis were 2.8% in the low-risk cohort (n=196), 9.9% in the intermediate-risk cohort (n=1116) and 21.2% in the high-risk cohort (n=276). In addition, the risk assessment strategy proved valid at follow-up and in major PAH subgroups.An abbreviated version of the risk assessment strategy proposed by the current European PH guidelines provides accurate mortality estimates in patients with PAH.
Intervertebral disc degeneration (IDD) is a complicated process that involves both cellular apoptosis and senescence. Metformin has been reported to stimulate autophagy, whereas autophagy is shown to protect against apoptosis and senescence. Therefore, we hypothesize that metformin may have therapeutic effect on IDD through autophagy stimulation. The effect of metformin on IDD was investigated both in vitro and in vivo. Our study showed that metformin attenuated cellular apoptosis and senescence induced by tert-butyl hydroperoxide in nucleus pulposus cells. Autophagy, as well as its upstream regulator AMPK, was activated by metformin in nucleus pulposus cells in a dose- and time-dependent manner. Inhibition of autophagy by 3-MA partially abolished the protective effect of metformin against nucleus pulposus cells' apoptosis and senescence, indicating that autophagy was involved in the protective effect of metformin on IDD. In addition, metformin was shown to promote the expression of anabolic genes such as Col2a1 and Acan expression while inhibiting the expression of catabolic genes such as Mmp3 and Adamts5 in nucleus pulposus cells. In vivo study illustrated that metformin treatment could ameliorate IDD in a puncture-induced rat model. Thus, our study showed that metformin could protect nucleus pulposus cells against apoptosis and senescence via autophagy stimulation and ameliorate disc degeneration in vivo, revealing its potential to be a therapeutic agent for IDD.
Damaged deoxyribonucleic acid (DNA) is a primary pathologic factor for osteoarthritis (OA); however, the mechanism by which DNA damage drives OA is unclear. Previous research demonstrated that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) participates in DNA damage response. As a result, the current study aimed at exploring the role STING, which is the major effector in the cGAS-STING signaling casacde, in OA progress in vitro, as well as in vivo. In this study, the expression of STING was evaluated in the human and mouse OA tissues, and in chondrocytes exposed to interleukin-1 beta (IL-1β). The influences of STING on the metabolism of the extracellular matrix (ECM), apoptosis, and senescence, were assessed in STING overexpressing and knocking-down chondrocytes. Moreover, the NF-κB-signaling casacde and its role in the regulatory effects of STING on ECM metabolism, apoptosis, and senescence were explored. The STING knockdown lentivirus was intra-articularly injected to evaluate its therapeutic impact on OA in mice in vivo. The results showed that the expression of STING was remarkably elevated in the human and mouse OA tissues and in chondrocytes exposed to IL-1β. Overexpression of STING promoted the expression of MMP13, as well as ADAMTS5, but suppressed the expression of Aggrecan, as well as Collagen II; it also enhanced apoptosis and senescence in chondrocytes exposed to and those untreated with IL-1β. The mechanistic study showed that STING activated NF-κB signaling cascade, whereas the blockage of NF-κB signaling attenuated STING-induced apoptosis and senescence, and ameliorated STING-induced ECM metabolism imbalance. In in vivo study, it was demonstrated that STING knockdown alleviated destabilization of the medial meniscus-induced OA development in mice. In conclusion, STING promotes OA by activating the NF-κB signaling cascade, whereas suppression of STING may provide a novel approach for OA therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.