We systematically study the performance of compact lumped element planar microwave $\mathrm{Nb_{70}Ti_{30}N}$ (NbTiN) resonators operating at 5 GHz in external in-plane magnetic fields up to 440 mT, a broad temperature regime from 2.2 K up to 13 K, as well as mK temperatures. For comparison, the resonators have been fabricated on thermally oxidized and pristine, (001) oriented silicon substrates. When operating the resonators in the multi-photon regime at $T=2.2$ K, we find internal quality factors $Q_{\mathrm{int}}\simeq$ $2\cdot10^5$ for NbTiN resonators grown on pristine Si substrates. In addition, we investigate the $Q$-factors of the resonators on pristine Si substrates at millikelvin temperatures to asses their applicability for quantum applications. We find $Q_{\mathrm{int}}\simeq$ $2\cdot10^5$ in the single photon regime and $Q_{\mathrm{int}}\simeq$ $5\cdot10^5$ in the high power regime at $T=7$ mK. From the excellent performance of our resonators over a broad temperature and magnetic field range, we conclude that NbTiN deposited on Si (100) substrates, where the suface oxide has been removed, constitutes a promising material platform for electron spin resonance and ferromagnetic resonance experiments using superconducting planar microwave resonators.