2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS) 2016
DOI: 10.1109/sims.2016.28
|View full text |Cite
|
Sign up to set email alerts
|

Tuning the LC-Parameters of Metamaterial Unit Cells Using Genetic Algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 11 publications
0
2
0
Order By: Relevance
“…Application field: Electromagnetics 159 Li, Chen, Zeng, et al [368] 2017 Adaptive GA optimization framework 160 Zhang and Cuii [369] 2017 BPSO optimization framework 161 Ahmed, Chandra, and Al-Behadili [370] 2017 GA Inverse design 162 Han, Cao, Gao, et al [371] 2017 GA optimization framework 163 Pfeiffer and Tomasic [372] 2017 GA optimization framework 164 Pelluri and Appasani [373] 2017 GA optimization framework 165 Feng, Chen, and Huang [374] 2017 GA optimization framework 166 Allen, Dykes, Reid, et al [375] 2017 GA optimization framework 167 Ding, Zhang, Zhang, et al [376] 2017 GA optimization framework 168 Mahdi and Taha [377] 2017 GA Topology optimization 169 Su, Lu, and Li [378] 2017 PSO optimization framework 170 Orlandi [379] 2018 Differential evolution optimization framework (DE) algorithm 171 Bagmancı, Karaaslan, Altıntaş, et al [380] 2018 GA optimization framework 172 Lim, Song, Kim, et al [381] 2018 GA optimization framework 173 Corrêa, Resende, Bicalho, et al [382] 2018 GA optimization framework 174 Kumar, Behera, and Suraj [383] 2018 GA optimization framework 175 Clemens, Iskander, Yun, et al [189] 2018 Hybrid genetic programming optimization framework 176 Soltani, Soltani, and Aguili [384] 2019 GA Inverse design 177 Ibili, Karaosmanoglu, and Ergul [385] 2019 GA optimization framework 178 Seshadri and Gupta [386] 2019 GA optimization framework 179 Nanda, De, Sahu, et al [387] 2019 GA optimization framework 180 Assal, Benzerga, Sharaiha, et al [388] 2019 GA optimization framework 181 Karatzidis, Kantartzis, Pyrialakos, et al [389] 2019 GA optimization framework 182 Tian and Li [390] 2019 GA optimization framework 183 Yuan, Ma, Sui, et al [391] 2019 GA Topology optimization 184 Yanzhang and Jinghao [392] 2019 GA Topology optimization 185 Sui, Ma, Chang, et al [393] 2019 IAGA optimization framework 186 Steckiewicz and Choroszucho [394] 2019 PSO optimization framework 187 Hao, Du, and Zhang …”
Section: Continuation Of Tablementioning
confidence: 99%
“…Application field: Electromagnetics 159 Li, Chen, Zeng, et al [368] 2017 Adaptive GA optimization framework 160 Zhang and Cuii [369] 2017 BPSO optimization framework 161 Ahmed, Chandra, and Al-Behadili [370] 2017 GA Inverse design 162 Han, Cao, Gao, et al [371] 2017 GA optimization framework 163 Pfeiffer and Tomasic [372] 2017 GA optimization framework 164 Pelluri and Appasani [373] 2017 GA optimization framework 165 Feng, Chen, and Huang [374] 2017 GA optimization framework 166 Allen, Dykes, Reid, et al [375] 2017 GA optimization framework 167 Ding, Zhang, Zhang, et al [376] 2017 GA optimization framework 168 Mahdi and Taha [377] 2017 GA Topology optimization 169 Su, Lu, and Li [378] 2017 PSO optimization framework 170 Orlandi [379] 2018 Differential evolution optimization framework (DE) algorithm 171 Bagmancı, Karaaslan, Altıntaş, et al [380] 2018 GA optimization framework 172 Lim, Song, Kim, et al [381] 2018 GA optimization framework 173 Corrêa, Resende, Bicalho, et al [382] 2018 GA optimization framework 174 Kumar, Behera, and Suraj [383] 2018 GA optimization framework 175 Clemens, Iskander, Yun, et al [189] 2018 Hybrid genetic programming optimization framework 176 Soltani, Soltani, and Aguili [384] 2019 GA Inverse design 177 Ibili, Karaosmanoglu, and Ergul [385] 2019 GA optimization framework 178 Seshadri and Gupta [386] 2019 GA optimization framework 179 Nanda, De, Sahu, et al [387] 2019 GA optimization framework 180 Assal, Benzerga, Sharaiha, et al [388] 2019 GA optimization framework 181 Karatzidis, Kantartzis, Pyrialakos, et al [389] 2019 GA optimization framework 182 Tian and Li [390] 2019 GA optimization framework 183 Yuan, Ma, Sui, et al [391] 2019 GA Topology optimization 184 Yanzhang and Jinghao [392] 2019 GA Topology optimization 185 Sui, Ma, Chang, et al [393] 2019 IAGA optimization framework 186 Steckiewicz and Choroszucho [394] 2019 PSO optimization framework 187 Hao, Du, and Zhang …”
Section: Continuation Of Tablementioning
confidence: 99%
“…This antenna displays superior radiation performance. The extracted LC parameters of the equivalent network using technique in [21] are shown in Table 1. Table 2 displays comparison bandwidth, efficiency, the reflection coefficients and gain, of the suggested antennas with other reference antenna.…”
mentioning
confidence: 99%