2012
DOI: 10.1090/s0002-9939-2012-11221-3
|View full text |Cite
|
Sign up to set email alerts
|

Twisted cohomology and homology groups associated to the Riemann-Wirtinger integral

Abstract: Abstract. We study twisted cohomology and homology groups on a onedimensional complex torus minus n distinct points with coefficients in a certain local system of rank one. This local system comes from the integrand of the Riemann-Wirtinger integral introduced by Mano. We construct bases of nonvanishing cohomology and homology groups, give an interpretation as a pairing of a cohomology class and a homology class to the Riemann-Wirtinger integral, and finally describe briefly the Gauss-Manin connection on the c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
43
0

Year Published

2012
2012
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(43 citation statements)
references
References 17 publications
0
43
0
Order By: Relevance
“…To the best of our knowledge, the closest construction in the literature to the one in this work are the ones by refs. [52,53]. In particular, the authors of ref.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…To the best of our knowledge, the closest construction in the literature to the one in this work are the ones by refs. [52,53]. In particular, the authors of ref.…”
Section: Discussionmentioning
confidence: 99%
“…While ϕ τ and φτ agree on the A-cycle, we note that the holomorphicity of the latter makes it easier to relate to the mathematical literature of KZB equations and twisted (co)homology. See section 6 and refs [52,53]…”
mentioning
confidence: 99%
“…The structure of twisted cohomology groups whose coefficients are rank-one local systems on a complex torus was studied in [6] in a more general setting. Results needed in the present paper are special cases in [6].…”
Section: Definition Of the Wirtinger Integral Of Level Nmentioning
confidence: 99%
“…If we consider a family of curves with the base space H whose fiber over τ ∈ H is M, then we can define a natural integrable connection on H 1 (M, L) (see [6]). Writing down this connection with respect to the generators of H 1 (M, L) described in Proposition 2.1, we obtain a system of linear differential equations satisfied by the Wirtinger integrals of level N as follows.…”
Section: Differential Equation For the Wirtinger Integral Of Level Nmentioning
confidence: 99%
See 1 more Smart Citation