Abstract. We study twisted cohomology and homology groups on a onedimensional complex torus minus n distinct points with coefficients in a certain local system of rank one. This local system comes from the integrand of the Riemann-Wirtinger integral introduced by Mano. We construct bases of nonvanishing cohomology and homology groups, give an interpretation as a pairing of a cohomology class and a homology class to the Riemann-Wirtinger integral, and finally describe briefly the Gauss-Manin connection on the cohomology groups.
We study analytic properties of solutions to the q-Painlevé VI equation (q-P V I ), which was derived by Jimbo and Sakai as the compatibility condition for a connection preserving deformation (CPD) of a linear q-difference equation. We investigate local behaviours of solutions to q-P V I around a boundary point making use of the structure of the CPD. We also give a formula connecting the local behaviours of a solution around two boundary points. The results in this paper should be useful in future for studying more detailed global properties of solutions to q-P V I or exploring new special solutions with remarkable analytic properties.
Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.
We develop an underlying relationship between the theory of rational approximations and that of isomonodromic deformations. We show that a certain duality in Hermite's two approximation problems for functions leads to the Schlesinger transformations, i.e. transformations of a linear differential equation shifting its characteristic exponents by integers while keeping its monodromy invariant. Since approximants and remainders are described by block-Toeplitz determinants, one can clearly understand the determinantal structure in isomonodromic deformations. We demonstrate our method in a certain family of Hamiltonian systems of isomonodromy type including the sixth Painlevé equation and Garnier systems; particularly, we present their solutions written in terms of iterated hypergeometric integrals. An algorithm for constructing the Schlesinger transformations is also discussed through vector continued fractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.