As automatic speaker verification (ASV) systems are vulnerable to spoofing attacks, they are typically used in conjunction with spoofing countermeasure (CM) systems to improve security. For example, the CM can first determine whether the input is human speech, then the ASV can determine whether this speech matches the speaker's identity. The performance of such a tandem system can be measured with a tandem detection cost function (t-DCF). However, ASV and CM systems are usually trained separately, using different metrics and data, which does not optimize their combined performance. In this work, we propose to optimize the tandem system directly by creating a differentiable version of t-DCF and employing techniques from reinforcement learning. The results indicate that these approaches offer better outcomes than finetuning, with our method providing a 20% relative improvement in the t-DCF in the ASVSpoof19 dataset in a constrained setting.