2007
DOI: 10.1016/j.cam.2006.10.010
|View full text |Cite
|
Sign up to set email alerts
|

Type II Hermite–Padé approximation to the exponential function

Abstract: Dedicated to Nico Temme on the occasion of his 65th birthday.Abstract. We obtain strong and uniform asymptotics in every domain of the complex plane for the scaled polynomials a(3nz), b(3nz), and c(3nz) where a, b, and c are the type II Hermite-Padé approximants to the exponential function of respective degrees 2n + 2, 2n and 2n, defined by a(z)e −z − b(z) = O(z 3n+2 ) and a(z)e z − c(z) = O(z 3n+2 ) as z → 0. Our analysis relies on a characterization of these polynomials in terms of a 3 × 3 matrix Riemann-Hil… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
5
0
3

Year Published

2007
2007
2016
2016

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 13 publications
(8 citation statements)
references
References 21 publications
0
5
0
3
Order By: Relevance
“…The behavior of Padé approximants to the exponential function has been studied, among others, in [14,15,16,19,9], and for extensions to Hermite-Padé approximants, one may consult [17,18,12,11]. Generalizations to rational interpolants are investigated in [3,4,2,20,21].…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…The behavior of Padé approximants to the exponential function has been studied, among others, in [14,15,16,19,9], and for extensions to Hermite-Padé approximants, one may consult [17,18,12,11]. Generalizations to rational interpolants are investigated in [3,4,2,20,21].…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…Для сравнения переформулируем с учетом принятых обозначений аналогичный результат об асимптотике аппроксимаций Эрмита-Паде 2-го рода, полученный в [24] (см. также работы [27] и [40], в которых с помощью метода матричной задачи Римана-Гильберта найдены очень точные асимптотики преобразованных путем масштабирования независимой переменной квадратичных диагональных аппроксимаций и многочленов Эрмита-Паде 1-го и 2-го рода в случае, когда λ 1 = −1, λ 2 = 1).…”
Section: из теоремы 3 вытекаетunclassified
“…Г. Шталь в [18] исследовал расположение нулей преобразованных с помощью масштабирования независимой переменной диагональных многочленов Эрмита-Паде 1-го и 2-го рода для системы экспонент {1, e z , e 2z } и показал, что указанные нули лежат на специальных дугах комплексной плоскости (см. также работы [27] и [40]). Ф. Вилонский в [33]…”
Section: из теоремы 3 вытекаетunclassified
See 1 more Smart Citation
“…Instead of the jump (4.50) in (4.49) we have the jump on ∆* (±) O b * , W 1 , on ∆ * 1 ∩ O b * , D * on δ * 1 ∩ O b * , , Σ b * := O b * ∩ (∆ * (±)1 function solution given in (4.51) for the problem (4.49), (4.52) should be modified slightly: the non-trivial 2 ×2 block now is in the left-upper corner (instead of the right-lower corner in the case IV) and instead of (Φ 1 , Φ 2 , w 1 /w 2 ) we now have (Φ 0 , Φ 1 , w 1 ); compare (4.50) and (4.52). For the solution of an identical local 3 × 3 Riemann-Hilbert problem, see[50,48,49,7,51,52].…”
mentioning
confidence: 99%