The aim of the present work was to investigate the potential prebiotic action of Goji berry powder on selected probiotic bacteria grown in a nutritive synthetic substrate and in simulated gastric and intestinal juices. Different probiotic strains of Bifidobacterium and Lactobacillus were grown in these substrates with or without the addition of encapsulated goji berry extracts of different polysaccharide and polyphenol contents. The results proved that the addition of the extracts promoted the proliferation of probiotic strains and, in particular, increased the number of bacterial colonies of Bifidobacterium animalis subsp. lactis (Bb12), Bifidobacterium longum (Bb46), and Lactobacillus casei by 2, 0.26, and 1.34 (log cfu/mL), respectively. Furthermore, the prebiotic effect seems to be correlated to Goji berry polysaccharides and/or polyphenols, higher contents of which (under the tested concentrations) could increase the stress tolerance of B. lactis and B. longum in a simulated gastrointestinal environment. According to the findings of the present research, it can be suggested that the Goji berry encapsulated extracts could be used as prebiotic additives in food or nutraceuticals, in order to stimulate growth or protect the viability of probiotic strains of Bifidobacterium and Lactobacillus.Microorganisms 2020, 8, 57 2 of 14 lung disorders, and anticancer activity [10][11][12], thanks to which, L. barbarum fruit has recently gained increasing popularity in Europe and North America [12].Recently Goji berries have been also positively evaluated for their prebiotic potential in foods like yogurt [13], since their polysaccharides may be selectively utilized by some probiotic bacteria [14], although a potential prebiotic effect may be also linked to other molecules like polyphenols, which may stimulate the growth of probiotic bacteria in the gut, or inhibit the growth of antagonistic bacteria in the complex intestinal microbiota [15].Gut colonization by beneficial probiotic bacteria is recognized as an essential parameter for intestinal health, and human health in general. It occurs in early life, as Bifidobacterium and Lactobacillus species attach to the gastrointestinal tract, which is necessary for establishing the gut mucosal barrier, maturation and modulation of the immune system, preventing infections by enteric pathogens and improving gastrointestinal function, digestion, and metabolism [16][17][18][19][20]. Nowadays, the presence (or supplementation) of certain probiotic bacteria, prebiotics or symbiotics (mixed preparations of probiotics and prebiotics) in the gastrointestinal tract is linked to prevention or reduced risk of ulcer, gastroenteritis, inflammation, colon cancer and metabolic syndrome (the latter involving hypolipidemic, hypocholesterolemic and potential hypoglycemic activity) as well as preterm birth and neonatal gastrointestinal disorder [21][22][23][24][25][26][27][28][29]. However, gut microbiota are not stable throughout life, and significant changes can occur naturally throughout the life...