Micro-/nanofibers (MNFs) are optical fibers with diameters close to or below the wavelength of the guided light. These tiny fibers can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields, and surface intensity, which is very attractive to optical sensing on the micro-/nano scale. In this review, we first introduce the basics of MNF optics and MNF optical sensors from physical and chemical to biological applications and review the progress and current status of this field. Then, we review and discuss hybrid MNF structures for advanced optical sensing by merging MNFs with functional structures including chemical indicators, quantum dots, dye molecules, plasmonic nanoparticles, 2-D materials, and optofluidic chips. Thirdly, we introduce the emerging trends in developing MNF-based advanced sensing technology for ultrasensitive, active, and wearable sensors and discuss the future prospects and challenges in this exciting research field. Finally, we end the review with a brief conclusion.