Brazing of titanium using low melting temperature filler alloys is a preferred choice regarding cost and preserving its mechanical properties. However, brazing titanium at low temperature is still a challenge, especially regarding aluminum-based filler alloys. During the last years, several brazing methods and Al-based fillers were developed to meet industrial requirements; some of them might achieve some of those requirements. e use of ultrasound in brazing has gained increased attention recently, which helps to reduce the time and the necessity for a special brazing environment, subsequently, reducing cost and increasing applicability. Brazing titanium below the α↔β transformation temperature, using commercial and experimental Al-based fillers of different compositions, is presented in this review; including the procedures of traditional and ultrasound-assisted brazing methods. Correspondingly, the effects of brazing conditions and alloying elements on the mechanical properties and the intermetallic compounds formation are examined.