Projections of future scenarios are scarce in developing countries where human activities are increasing and impacting land uses. We present a research based on the assessment of the baseline trends of normalized difference vegetation index (NDVI), precipitation, and temperature data for the Khuzestan Province, Iran, from 1984 to 2015 compiled from ground-based and remotely sensed sources. To achieve this goal, the Sen’s slope estimator, the Mann-Kendall test, and Pearson’s correlation test were used. After that, future trends in precipitation and temperature were estimated using the Canadian Earth System Model (CanESM2) model and were then used to estimate the NDVI trend for two future periods: from 2016 to 2046 and from 2046 to 2075. Our results showed that during the baseline period, precipitation decreased at all stations: 33.3% displayed a significant trend and the others were insignificant ones. Over the same period, the temperature increased at 66.7% of stations while NDVI decreased at all stations. The NDVI–precipitation relationship was positive while NDVI–temperature showed an inverse trend. During the first of the possible future periods and under the RCP2.6, RCP4.5, and RCP8.5 scenarios, NDVI and precipitation decreased, and temperatures significantly increased. In addition, the same trends were observed during the second future period; most of these were statistically significant. We conclude that much assessments are valuable and integral components of effective ecosystem planning and decisions.