Abstract. An accurate estimate of precipitation is essential to improve the reliability of hydrological models and helps for decision-making in agriculture and economy. Merged radar–rain-gauge products provide precipitation estimates at high spatial and temporal resolution. In this study, we assess the ability of the INCA (Integrated Nowcasting through Comprehensive Analysis) precipitation analysis product provided by ZAMG (the Austrian Central Institute for Meteorology and Geodynamics) in detecting and estimating precipitation for 12 years in southeast Austria. The blended radar–rain-gauge INCA precipitation analyses are evaluated using WegenerNet – a very dense rain gauge network with about 1 station per 2 km2 – as true precipitation. We analyze annual, seasonal, and extreme precipitation of the 1 km × 1 km INCA product and its development from 2007 to 2018. Based on the results, the performance of INCA can be divided into three different periods. From 2007 to 2011, the annual area-mean precipitation in INCA was slightly higher than WegenerNet, except in 2009. However, INCA underestimates precipitation in grid cells farther away from the two ZAMG meteorological stations in the study area (which are used as input for INCA), especially from May to September (wet season). From 2012 to 2014, INCA's overestimation of the annual-mean precipitation amount is even higher, with an average of 25 %, but INCA performs better close to the two ZAMG stations. From 2015 onwards, the overestimation is still dominant in most cells but less pronounced than during the second period, with an average of 12.5 %. Regarding precipitation detection, INCA performs better during the wet seasons. Generally, false events in INCA happen less frequently in the cells closer to the ZAMG stations than in other cells. The number of true events, however, is comparably low closer to the ZAMG stations. The difference between INCA and WegenerNet estimates is more noticeable for extremes. We separate individual events using a 1-hour minimum inter-event time (MIT) and demonstrate that INCA underestimates the events' peak intensity until 2012 and overestimates this value after mid-2012 in most cases. The overestimation of the peak-intensity is more pronounced during July. In general, the precipitation rate and the number of grid cells with precipitation are higher in INCA. Furthermore, 40 % of the individual events start earlier, and 50 % end later in INCA. Considering four extreme convective short-duration events, there is a time shift in peak intensity detection. The relative differences in the peak intensity in these events can change from approximately −40 % to 40 %. The results of this study can be used for further improvements of INCA products as well as for future hydrological studies in this area.
<p>Precipitation is one of the most important inputs of meteorological and hydrological models and also flood warning systems. Thus, accurate estimation of rainfall is essential for improving the reliability of the models and systems. Although remote sensing (RS) techniques for rainfall estimation (e.g., weather radars and satellite microwave imagers) have improved significantly over the last decades, rain gauges are still more reliable and widely used for this purpose and also for the evaluation of RS estimates. Since the characteristics of a rainfall event can change rapidly in space and time, the accuracy of rain gauge estimation is highly dependent on the spatial and temporal resolution of the gauge network.</p><p>The main aim of this study is to evaluate the ability of the Integrated Nowcasting through Comprehensive Analysis (INCA) of the Central Institute for Meteorology and Geodynamics (ZAMG) to detect and estimate rainfall events. This is done by using 12 years of data from a very dense rain gauge network, the WegenerNet Feldbach region, as a reference, and comparing its data to the INCA analyses. INCA rainfall analysis data are based on a combination of ZAMG ground station data, weather radar data, and high-resolution topographic data. The system provides precipitation rate data with a 1 km spatial grid resolution and 15 minutes temporal resolution. The WegenerNet includes 155 ground stations, almost uniformly spread over a moderate hilly orography area of about 22 km &#215; 16 km.</p><p>After removing outliers and scale WegenerNet data to 1 km, the accuracy of INCA to detect and estimate rainfall events was investigated using 12 years of the dataset. The results show that INCA can detect rainfall events relatively well. It was found that INCA overestimates the rainfall amount between 2012 and 2014, and generally overestimates precipitation for light rainfall events. For heavy rainfall events, however, an underestimation of INCA is prominent in most events. Based on the results, the difference between INCA and WegenerNet estimates is relatively higher during the wet season in the summer half-year (May-September). It is worth pointing out that INCA performs better in detecting and estimating rainfall around the two ZAMG stations located within the study area.</p>
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.