We investigated the role of lake sediments as carbon (C) source and sink in the annual C budget of a small (0.07 km 2 ) and shallow (mean depth, 3.4 m), humic lake in boreal Sweden. Organic carbon (OC) burial and mineralization in the sediments were quantified from 210 Pb-dated sediment and laboratory sediment incubation experiments, respectively. Burial and mineralization rates were then upscaled to the entire basin and to one whole year using sediment thickness derived from sub-bottom profiling, basin morphometry, and water column monitoring data of temperature and oxygen concentration. Furthermore, catchment C import, open water metabolism, photochemical mineralization as well as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions to the atmosphere were quantified to relate sediment processes to other lake C fluxes. We found that on a whole-basin and annual scale, sediment OC mineralization was three times larger than OC burial, and contributed about 16% to the annual CO 2 emission. Other contributions to CO 2 emission were water column metabolism (31%), photochemical mineralization (6%), and catchment imports via inlet streams and inflow of shallow groundwater (22%). The remainder (25%) could not be explained by our flux calculations, but was most likely attributed to an underestimation in groundwater inflow. We conclude that on an annual and whole-basin scale (1) sediment OC mineralization dominated over OC burial, (2) water column OC mineralization contributed more to lake CO 2 emission than sediment OC mineralization, and (3) catchment import of C to the lake was greater than lake-internal C cycling.