Wetland methane (CH 4 ) emissions are the largest natural source in the global CH 4 budget, contributing to roughly one third of total natural and anthropogenic emissions. As the second most important anthropogenic greenhouse gas in the atmosphere after CO 2 , CH 4 is strongly associated with climate feedbacks. However, due to the paucity of data, wetland CH 4 feedbacks were not fully assessed in the Intergovernmental Panel on Climate Change Fifth Assessment Report. The degree to which future expansion of wetlands and CH 4 emissions will evolve and consequently drive climate feedbacks is thus a question of major concern. Here we present an ensemble estimate of wetland CH 4 emissions driven by 38 general circulation models for the 21st century. We find that climate changeinduced increases in boreal wetland extent and temperature-driven increases in tropical CH 4 T errestrial wetlands are among the largest biogenic sources of methane contributing to growing atmospheric CH 4 concentrations (1) and are, in turn, highly sensitive to climate change (2). However, radiative feedbacks from wetland CH 4 emissions were not considered in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and Integrated Assessment Models (IAM) assumed anthropogenic sources to be the only driver responsible for the increase of atmospheric CH 4 burden since the 1750s (3). The role of wetland CH 4 emissions, however, may play an increasingly larger role in future atmospheric growth of methane because of the large stocks of mineral and organic carbon stored under anaerobic conditions in both boreal and tropical regions. Paleoclimatological and contemporary observations of the climate sensitivity of wetland methane emissions suggest the potential for a large feedback (4), but there remains large uncertainty in quantifying the actual range of the response (5, 6).Increasing air temperature is linked to the thawing of permafrost and to increased rates of soil microbial activity (7), which directly lead to greater CH 4 production in soils due to thaw-induced change in surface wetland areas (8). In the tropics, wetland areal extent is also influenced by precipitation, which affects the area of surface inundation, water table depth, and soil moisture that, in turn, promote methanogenesis. Elevated CO 2 concentrations can increase ecosystem water use efficiency and thus soil moisture, and also increase soil carbon substrate availability for microbial activities (9). Tropical wetlands, for which a decline in inundation was observed in recent decades (10), are already exposed to increasing frequencies in extreme climate events, e.g., heat waves, floods, and droughts, and changes in rainfall distribution (11) and variability in methane emissions (12). Meanwhile, northern highlatitude ecosystems are experiencing a more rapid temperature increase than elsewhere globally and with increased rates of soil respiration (13), yet, locally at least, no response in methane emissions (14). Despite the importance of these feedbacks noted by the Intergovernmen...