Recently, violence has been a very common and serious public health problem in the world. In this new mathematical modeling tactic study, we formulated and examined the firsthand violence mathematical model with five distinct classes of the human population (susceptible, violence-exposed, violence, negotiated, and reconciled). The model takes into account the diffusion of violence and infection. The violence-free and violence-dominance model equilibrium points are calculated, and their local and global stabilities are analyzed. The model threshold values are obtained. As a result of the model analysis, the violence diffusion is under control if the basic reproduction number is less than unity, and it diffuses through the community if this number exceeds unity. Besides, the sensitivity analysis of the parameter values of the basic reproduction number is demonstrated. We have applied the MATLAB ode45 solver to illustrate the numerical results of the model. Finally, from analytical and numerical solutions, we obtain jointly equivalent and consistent results.