The presence of speckles and the absence of discriminative features make it difficult for the pixel-level polarimetric synthetic aperture radar (PolSAR) image classification to achieve more accurate and coherent interpretation results, especially in the case of limited available training samples. To this end, this paper presents a composite kernel-based elastic net classifier (CK-ENC) for better PolSAR image classification. First, based on superpixel segmentation of different scales, three types of features are extracted to consider more discriminative information, thereby effectively suppressing the interference of speckles and achieving better target contour preservation. Then, a composite kernel (CK) is constructed to map these features and effectively implement feature fusion under the kernel framework. The CK exploits the correlation and diversity between different features to improve the representation and discrimination capabilities of features. Finally, an ENC integrated with CK (CK-ENC) is proposed to achieve better PolSAR image classification performance with limited training samples. Experimental results on airborne and spaceborne PolSAR datasets demonstrate that the proposed CK-ENC can achieve better visual coherence and yield higher classification accuracies than other state-of-art methods, especially in the case of limited training samples.