This research provides a characterization of ancient Roman mortars from “Villa del Capo di Sorrento” (commonly known as “Villa di Pollio Felice” or “Bagni della Regina Giovanna”). A deepened analysis of cementitious binding matrix and aggregates was conducted with the aims of determining possible sources of raw materials and the mix recipe, and to evaluate the minerogenetic secondary processes. Twenty samples taken from the Villa were investigated by means of a multi-analytical approach, including polarized optical microscopy on thin sections, X-ray powder diffraction, scanning electron microscopy analysis, energy dispersed spectrometry, simultaneous thermal analyses, and mercury intrusion porosimetry. Bedding mortars were made with slaked lime mixed with volcanic materials, whereas coating mortars were made adding to previous recipe as ceramic fragments. All samples were classified as hydraulic mortars. Cementitious binding matrix was characterized by gel-like C-A-S-H, calcite, hydrocalumite, and gypsum, deriving from lime/pozzolanic material. Geomaterials used for mortar production had a local origin. Pozzolanic materials, such as volcanic fragments, scoriae, pumice, and crystal fragments derived from both pyroclastic rocks of the Campi Flegrei district and from rocks of the Somma-Vesuvio complex; porosity test suggest that the products related to minerogenetic secondary processes, make mortars more resistant.