Historical pollution can be elucidated with variations of elements' concentration in tree rings by using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). However, the capacity of chemical elements' absorption significantly depends on the tree species and element types. Metal concentrations in the rings for five species (Platanus occidentalis, Salix koreensis, Chamaecyparis obtusa, Pinus densiflora, Ginkgo biloba) were investigated in light of metal pollution history in ambient air of D industrial site located in Daejeon, Korea. The calibration for LA-ICP-MS was performed using cellulose-matrix matched standards with 13 C normalization. Tree ring series except for Ginkgo sp. showed that the accumulation rates of Pb and Cd were higher between 1992 and 1999. Other elements, such as Fe, Cr, Mn, Cd, Zn, and Sr, showed a variation in the rings, likely due to the different physiological processes of element uptake and radial mobility. Concentrations of Pb and Cd in the annual rings of Pinus sp. corresponded to the metal monitoring data for the ambient air with the correlation coefficients of 0.879 and 0.579, respectively. Moreover, Cd in Platanus sp. and Pb in Salix sp. showed a positive correlation to ambient metal concentration compared to Chamaecyparis sp. and Ginkgo sp. Therefore, caution should be taken to select candidate elements as well as tree species to reconstruct the ambient air metal pollution history by measuring the concentration of metal in the tree ring.