2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) 2016
DOI: 10.1109/sibgrapi.2016.061
|View full text |Cite
|
Sign up to set email alerts
|

Using 3D Texture and Margin Sharpness Features on Classification of Small Pulmonary Nodules

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
26
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 20 publications
(28 citation statements)
references
References 27 publications
0
26
0
2
Order By: Relevance
“…Next, is showed the comparison between our the best result using CNN with the results obtained by [Felix et al 2016], [Dilger et al 2015], and our results were better (see Table 5). How Anirudh et al [Anirudh et al 2016] evaluated their experiments using free receiver operating characteristic (FROC), a metric not applied in this work, we didn't compare our results with theirs.…”
Section: Results and Analysismentioning
confidence: 67%
See 2 more Smart Citations
“…Next, is showed the comparison between our the best result using CNN with the results obtained by [Felix et al 2016], [Dilger et al 2015], and our results were better (see Table 5). How Anirudh et al [Anirudh et al 2016] evaluated their experiments using free receiver operating characteristic (FROC), a metric not applied in this work, we didn't compare our results with theirs.…”
Section: Results and Analysismentioning
confidence: 67%
“…Many works have been done aiming do classify lung nodules, but most focus on both large and small nodules, and few focus on small nodules. In this paper, we separated the works made by Felix et al [Felix et al 2016], Dilger et al [Dilger et al 2015] and Anirudh et al [Anirudh et al 2016].…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Os primeiros trabalhos para classificação automática de nódulos pulmonares consistiram na extração de descritores de imagem para posterior uso por classificadores como Support Vector Machine (SVM) [16], Random Forest (RF) [17] e Redes Neurais Artificiais (RNA) [18]. Com a difusão do uso de AP nosúltimos anos, esta família de técnicas foi rapidamente empregada na classificação de nódulos pulmonares, trazendo avanços significativos naárea [7], [19].…”
Section: Trabalhos Relacionadosunclassified
“…Diversos esquemas CAD para classificação de nódulos pulmonares malignos e benignos foram propostos pela literatura. Tradicionalmente, estes esquemas são compostos por métodos de segmentação de imagens de TC, extração de atributos quantitativos, seleção de características relevantes e classificadores de aprendizado de máquina (KAYA, 2018;GONG et al, 2018;OROOJI et al, 2018;CHOI et al, 2018;NISHIO;NAGASHIMA, 2017;ALILOU;OROOJI;MADABHUSHI, 2017;CARVALHO FILHO et al, 2017;FELIX et al, 2016;REEVES;XIE;JIRAPATNAKUL, 2016;DILGER et al, 2015;WU et al, 2013). Contudo, técnicas de aprendizado profundo (do Inglês deep learning) de máquina têm feito grandes avanços recentemente em problemas de reconhecimento de padrões (CHARTRAND et al, 2017;LITJENS et al, 2017;LECUN;BENGIO;HINTON, 2015).…”
Section: Estado Da Arteunclassified