Forecasting electricity demand at the regional or national level is a key procedural element of power-system planning. However, achieving such objectives in the residential sector, the primary driver of peak demand, is challenging given this sector’s pattern of constantly fluctuating and gradually increasing energy usage. Although deep learning algorithms have recently yielded promising results in various time series analyses, their potential applicability to forecasting monthly residential electricity demand has yet to be fully explored. As such, this study proposed a forecasting model with social and weather-related variables by introducing long short-term memory (LSTM), which has been known to be powerful among deep learning-based approaches for time series forecasting. The validation of the proposed model was performed using a set of data spanning 22 years in South Korea. The resulting forecasting performance was evaluated on the basis of six performance measures. Further, this model’s performance was subjected to a comparison with the performance of four benchmark models. The performance of the proposed model was exceptional according to all of the measures employed. This model can facilitate improved decision-making regarding power-system planning by accurately forecasting the electricity demands of the residential sector, thereby contributing to the efficient production and use of resources.