Abstract. For the past 2 decades wind turbines have been growing in number all over the world as a response to the increasing demand for renewable energy. However, the rapid expansion of wind turbines presents a problem for many radar systems, including weather radars. Wind turbines in the line of sight of a weather radar can have a negative impact on the radar's measurements. As weather radars are important instruments for meteorological offices, finding a way for wind turbines and weather radars to co-exist would be of great societal value.Doppler weather radars base their measurements on inphase and quadrature phase (I/Q) data. In this work a month's worth of recordings of high-resolution I/Q data from an operational Swedish C-band weather radar are presented. The impact of point targets, such as masts and wind turbines, on the I/Q data is analysed and characterised. It is shown that the impact of point targets on single radar pulses, when normalised by amplitude, is manifested as a distinct and highly repeatable signature. The shape of this signature is found to be independent of the size, shape and yaw angle of the wind turbine. It is further demonstrated how the robustness of the point target signature can be used to identify and filter out the impact of wind turbines in the radar's signal processor.