Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as "kalatakalata," the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V 1a receptors, members of the G proteincoupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands.yclotides are head-to-tail cyclized plant peptides containing three conserved disulfide bonds in a knotted arrangement known as a cyclic cystine-knot motif (1). This confers them high stability (2) and presumably improves their oral bioactivity relative to their linear counterparts (3). They were first discovered in a decoction of Oldenlandia affinis DC. (Rubiaceae) leaves, an herbal remedy used in traditional African medicine during childbirth (4). The observed induction of labor and shortened delivery time were later studied on isolated rat and rabbit uteri and on human uterine strips (4, 5). The peptides responsible for the contractility effects (5) raised interest because they survived boiling, presumably as a result of their unique 3D structure, which was elucidated in 1995 (6). Since then, several plant species of the coffee (Rubiaceae) (7), violet (Violaceae) (8), legume (Fabaceae) (9), potato (Solanaceae) (10) and grass (Poaceae) families (11) have been identified to produce cyclotides. Currently, ∼300 sequences have been reported (12), and the predicted number of >50,000 cyclotides in Rubiaceae alone (7) suggests them to be one of the largest peptide classes within the plant kingdom. Their high intercysteine sequence variability and structural plasticity (13), together with intrinsic bioactivities, make them interesting templates for the development of novel pharmaceuticals (14).However, five decades after the discovery of cyclotides, there still is not any information about specific molecular targe...