Personalized medicine requires the development of a wide array of biomarker diagnostic assays, reflecting individual variations and thus allowing tailored therapeutic interventions. Membrane proteins comprise approximately 30% of total human proteins; they play a key role in various physiological functions and pathological conditions, although, currently, only a limited number of membrane proteins are applied as biomarkers. In many normal tissues, cell surface membrane proteins are not easily accessible for diagnostic sampling, and tumor-derived membrane preparations – while serving as potential tumor biomarkers – may not reflect physiological protein expression. In addition to post-translational modifications, which may include glycosylation, phosphorylation and lipid modifications, the trafficking of membrane proteins is also regulated. Moreover, a tight cellular quality control monitors membrane protein maturation, and continuous removal and reinsertion, involving special signaling systems, occurs in many cases. However, cell surface membrane proteins already serve as valuable prognostic and predicative biomarkers, for example, in hematological and immunological diseases, by the determination of the cluster of differentiation markers. In this review, we demonstrate the relevance of cell surface membrane biomarkers in various diseases and call attention to the potential application of red blood cell (erythrocyte) membrane proteins in this regard. Surprisingly, red blood cells express hundreds of membrane proteins, which seem to reflect a general genetic and regulatory background, and may serve as relatively stable and easily accessible personalized membrane biomarkers. Quantitative membrane protein detection in red blood cells by flow cytometry may bring a breakthrough in this regard.