Aims Chronic heart failure with reduced ejection fraction remains a major health issue. To date, no reliable biomarker is available to predict reduced left ventricular ejection fraction (LV-EF). We aimed to identify novel circulating biomarkers for reduced left ventricular function using untargeted serum metabolomics in two independent patient cohorts.
Methods and resultsEchocardiography and non-targeted serum metabolomics were conducted in two patient cohorts with varying left ventricular function: (1) 25 patients with type 2 diabetes with established cardiovascular disease or high cardiovascular risk (LV-EF range 20-66%) (discovery cohort) and (2) 37 patients hospitalized for myocardial infarction (LV-EF range 25-60%) (validation cohort). In the discovery cohort, untargeted metabolomics revealed seven metabolites performing better than N-terminal pro-B-type natriuretic peptide in the prediction of impaired left ventricular function shown by LV-EF. For only one of the metabolites, acisoga, the predictive value for LV-EF could be confirmed in the validation cohort (r = À0.37, P = 0.02). In the discovery cohort, acisoga did not only correlate with LV-EF (r = À60, P = 0.0016), but also with global circumferential strain (r = 0.67, P = 0.0003) and global longitudinal strain (r = 0.68, P = 0.0002). Similar results could be detected in the discovery cohort in a 6 month follow-up proofing stability of these results over time. With an area under the curve of 0.86 in the receiver operating characteristic analysis, acisoga discriminated between patients with normal EF and LV-EF < 40%. Multivariate analysis exposed acisoga as independent marker for impairment of LV-EF (Beta = À0.71, P = 0.004). Conclusions We found the polyamine metabolite acisoga to be elevated in patients with impaired LV-EF in two independent cohorts. Our analyses suggest that acisoga may be a valuable biomarker to detect patients with heart failure with reduced ejection fraction.