The priority pollutant lists of both the U.S. Environmental Protection Agency (U.S. EPA) and the European Union (EU) include diphenylamine (DPA), a contaminant found in wastewater of various industries. This work demonstrates the potential of using enzymatic treatment to remove DPA from buffered synthetic wastewater. This treatment method includes oxidative polymerization of DPA using laccase from Trametes villosa, followed by removal of those polymers via adsorptive micellar flocculation (AMF) using sodium lauryl sulfate (SDS) and alum. Researchers investigated the effects of pH, laccase concentration, molecular mass, and concentration of polyethylene glycol (PEG) in continuously stirred batch reactors to achieve 95% substrate conversion in three hours. Treatment of 0.19 mM DPA was best at pH 7 and an enzyme concentration from 0.0025 to 0.0075 standard activity unit/mL. Except for PEG 400, optimum enzyme and PEG concentrations decreased with an increase in PEG molecular mass. Optimum AMF conditions were pH 3.0 to 6.5, 200 mg/L of SDS, and 150 mg/L of alum.