Melanin is a functional pigment that is used in various products. It can be produced by Streptomyces antibioticus NRRL B-1701 when supplemented with L-tyrosine. Arthrospira (Spirulina) platensis is a cyanobacterium with high protein content, including the protein phycocyanin (PC). During PC’s extraction, biomass residues are generated, and these residues still contain various amino acids, especially L-tyrosine, which can be used as a low-cost supplement for melanin production. Thus, this study employed a hydrolysate of A. platensis biomass residue for L-tyrosine substitution. The effects of two drying methods, namely, lyophilization and dying via a hot air oven, on the proximate composition and content of L-tyrosine in the biomass residue were evaluated. The highest L-tyrosine (0.268 g L-tyrosine/100 g dried biomass) concentration was obtained from a hot-air-oven-dried biomass residue hydrolysate (HAO-DBRH). The HAO-DBRH was then used as a low-cost L-tyrosine supplement for maximizing melanin production, which was optimized by the response surface methodology (RSM) through central composite design (CCD). Using the RSM–CCD, the maximum level of melanin production achieved was 0.24 g/L, which is approximately four times higher than it was before optimization. This result suggests that A. platensis residue hydrolysate could be an economically feasible and low-cost alternative source of L-tyrosine for the production of melanin.