Abstract. We find that wintertime temperature anomalies near 4 hPa and 50 • N/S are related, through dynamics, to anomalies in ozone and temperature, particularly in the tropical stratosphere but also throughout the upper stratosphere and mesosphere. These mid-latitude anomalies occur on timescales of up to a month, and are related to changes in wave forcing. A change in the meridional Brewer-Dobson circulation extends from the middle stratosphere into the mesosphere and forms a temperature-change quadrupole from Equator to pole. We develop a dynamical index based on detrended, deseasonalised mid-latitude temperature. When employed in multiple linear regression, this index can account for up to 60 % of the total variability of temperature, peaking at ∼ 5 hPa and dropping to 0 at ∼ 50 and ∼ 0.5 hPa, respectively, and increasing again into the mesosphere. Ozone similarly sees up to an additional 50 % of variability accounted for, with a slightly higher maximum and strong altitude dependence, with zero improvement found at 10 hPa. Further, the uncertainty on all equatorial multiple-linear regression coefficients can be reduced by up to 35 and 20 % in temperature and ozone, respectively, and so this index is an important tool for quantifying current and future ozone recovery.