2022
DOI: 10.3390/mca27020023
|View full text |Cite
|
Sign up to set email alerts
|

Variable Decomposition for Large-Scale Constrained Optimization Problems Using a Grouping Genetic Algorithm

Abstract: Several real optimization problems are very difficult, and their optimal solutions cannot be found with a traditional method. Moreover, for some of these problems, the large number of decision variables is a major contributing factor to their complexity; they are known as Large-Scale Optimization Problems, and various strategies have been proposed to deal with them. One of the most popular tools is called Cooperative Co-Evolution, which works through a decomposition of the decision variables into smaller subpr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 35 publications
0
1
0
1
Order By: Relevance
“…Kinerja algoritma genetika berkerja dalam bentuk kode sekumpulan parameter [11], Untuk menyelesaikan masalah yang lebih rumit, algoritma genetika terintegrasi menggunakan metode hibridisasi untuk meningkatkan efektivitas kinerjanya [12]. Pencarian dilakukan dengan populasi dari masalah penjadwalan di representasikan menjadi string kromosom [13,14] serta berinterkasi dalam sub komponen [15] .…”
unclassified
“…Kinerja algoritma genetika berkerja dalam bentuk kode sekumpulan parameter [11], Untuk menyelesaikan masalah yang lebih rumit, algoritma genetika terintegrasi menggunakan metode hibridisasi untuk meningkatkan efektivitas kinerjanya [12]. Pencarian dilakukan dengan populasi dari masalah penjadwalan di representasikan menjadi string kromosom [13,14] serta berinterkasi dalam sub komponen [15] .…”
unclassified
“…In [8], Carmona-Arroyo et al propose a grouping genetic algorithm (GGA) to deal with the decomposition of decision variables in order to efficiently tackle large-scale optimization problems. Although the cooperative co-evolution approach is widely used to deal with unconstrained optimization problems, there are few works related to constrained problems.…”
mentioning
confidence: 99%