Competition is assumed to shape niche widths, affecting species survival and coexistence. Expectedly, high interspecific competition will reduce population niche widths, whereas high intraspecific competition will do the opposite. Here we test in situ how intra-and interspecific competition affects trophic resource use and the individual and population niche widths of two lacustrine fish species, Arctic charr and brown trout, covering a 40 year study period with highly contrasting competitive impacts prior to and following a large-scale fish culling experiment. Initially, an overcrowded Arctic charr population dominated the study system, with brown trout being nearly absent. The culling experiment reduced the littoral Arctic charr density by 80%, whereupon brown trout gradually increased its density in the system. Thus, over the study period, the Arctic charr population went from high to low intraspecific competition, followed by increasing interspecific competition with brown trout. As hypothesized, the relaxed intraspecific competition following the experimental culling reduced individual diet specialization and compressed population niche width of Arctic charr. During the initial increase of the brown trout population, there was a large dietary overlap between the two species. Over the subsequent intensified interspecific competition from the population build-up of brown trout, their trophic niche overlap chiefly declined due to a dietary shift of Arctic charr towards enhanced zooplankton consumption. Contrary to theoretical expectations, the individual and population niche widths of Arctic charr increased with intensified interspecific competition. In contrast, the diet and niche width of brown trout remained stable over time, confirming its competitive superiority. The large-scale culling experiment and associated long-term research revealed pronounced temporal dynamics in trophic niche and resource use of the inferior competitor, substantiating that intra-and interspecific competition have large and contrasting impacts on individual and population niches.