What is the value of a single bit to a guesser? We study this problem in a setup where Alice wishes to guess an i.i.d. random vector, and can procure one bit of information from Bob, who observes this vector through a memoryless channel. We are interested in the guessing efficiency, which we define as the best possible multiplicative reduction in Alice's guessing-moments obtainable by observing Bob's bit. For the case of a uniform binary vector observed through a binary symmetric channel, we provide two lower bounds on the guessing efficiency by analyzing the performance of the Dictator and Majority functions, and two upper bounds via maximum entropy and Fourieranalytic / hypercontractivity arguments. We then extend our maximum entropy argument to give a lower bound on the guessing efficiency for a general channel with a binary uniform input, via the strong data-processing inequality constant of the reverse channel. We compute this bound for the binary erasure channel, and conjecture that Greedy Dictator functions achieve the guessing efficiency.