Secretion is a fundamental process in all living organisms. Using conventional secretion pathways, many plant pathogens release effectors into the host plants to downregulate immunity and promote infection. However, this does not always constitute the only way that effectors are sorted and tracked to their final destination such as the biotrophic interfacial complex-associated effectors produced by the blast fungus Magnaporthe oryzae. Here, we uncover a novel unconventional route originating from fungal vacuolar membrane to the host interface and plasma membrane. We found that a GFP-MoRab7 labeled vacuole is closely associated with the interface structure throughout M. oryzae invasive growth. Conditional inactivation of MoRab7 impaired the establishment of the biotrophy interface and secretion of Pwl2 effector. To perform the vacuolar trafficking pathway, MoRab7 first recruits the retromer complex to the vacuole membrane, enabling it recognizes a batch of SNARE proteins, including the v-SNARE MoSnc1. Live-cell imaging supports both retromer complex component and MoSnc1 protein labeled vesicles showing the trafficking dynamics toward the interface or plasma membrane, and then fusion with target membranes. Lastly, disruption of the MoRab7/Retromer/MoSnc1-based endolysosomal cascade affects effector secretion and fungal pathogenicity. Taken together, we discovered an unconventional protein and membrane trafficking route starting from the fungal endolysosomes to the M. oryzae-rice interaction interface, and dissect the role of MoRab7/Retromer/MoSnc1 constituent sorting machinery in effector secretion during invasive growth in M. oryzae.