False smut of rice, caused by Ustilaginoidea virens, has become one of the most important diseases in rice-growing regions worldwide. The disease causes a significant yield loss and imposes health threats to humans and animals by producing mycotoxins. In this review, we update our understanding of the pathogen, including the disease cycle and infection strategies, the decoding of the U. virens genome, comparative/functional genomics, and effector biology. Whereas the decoding of the U. virens genome unveils specific adaptations of the pathogen in successfully occupying rice flowers, progresses in comparative/functional genomics and effector biology have begun to uncover the molecular mechanisms underlying U. virens virulence and pathogenicity. We highlight the identification and characterization of the produced mycotoxins and their biosynthetic pathways in U. virens. The management strategies for this disease are also discussed. The flower-specific infection strategy makes the pathogen a unique tool to unveil novel mechanisms for the interactions beteen nonobligate biotrophic pathogens and their hosts. Expected final online publication date for the Annual Review of Phytopathology, Volume 58 is August 25, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
A greenhouse experiment was conducted to evaluate the effects of different inoculum densities of two Saudi isolates of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Four densities (10(4), 10(6), 10(8) and 10(10) spores/g of soil) of each fungus were used. The results indicate that all four inoculum densities of the two Trichoderma species suppressed the nematode reproduction and root galling; and increased the growth of tomato plants, compared to controls. Efficacy of both fungi increased as their inoculum densities increased. Generally, efficacy of T. harzianum was better than that of T. viride, especially at the highest used density (10(10) spore/g soil) which resulted in the best control.
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Plants in nature are under the persistent intimidation of severe microbial diseases, threatening a sustainable food production system. Plant-bacterial pathogens are a major concern in the contemporary era, resulting in reduced plant growth and productivity. Plant antibiotics and chemical-based bactericides have been extensively used to evade plant bacterial diseases. To counteract this pressure, bacteria have evolved an array of resistance mechanisms, including innate and adaptive immune systems. The emergence of resistant bacteria and detrimental consequences of antimicrobial compounds on the environment and human health, accentuates the development of an alternative disease evacuation strategy. The phage cocktail therapy is a multidimensional approach effectively employed for the biocontrol of diverse resistant bacterial infections without affecting the fauna and flora. Phages engage a diverse set of counter defense strategies to undermine wide-ranging anti-phage defense mechanisms of bacterial pathogens. Microbial ecology, evolution, and dynamics of the interactions between phage and plant-bacterial pathogens lead to the engineering of robust phage cocktail therapeutics for the mitigation of devastating phytobacterial diseases. In this review, we highlight the concrete and fundamental determinants in the development and application of phage cocktails and their underlying mechanism, combating resistant plant-bacterial pathogens. Additionally, we provide recent advances in the use of phage cocktail therapy against phytobacteria for the biocontrol of devastating plant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.