Abstract-Tunnel FETs (TFETs) with steep subthreshold slope have been attracting much attention as building blocks for future low-power integrated circuits and CMOS technology devices. Here we report on recent advances in vertical TFETs using III-V/Si heterojunctions. These heterojunctions, which are formed by direct integration of III-V nanowires (NWs) on Si, are promising tunnel junction for achieving steep subthreshold slope (SS). The III-V/Si heterojunction inherently forms abrupt junctions regardless of precise doping technique because the band discontinuity is determined by only the offset of III-V and Si, and depletion region can be controlled by the III-V MOS structure. Thus, good gate-electrostatic control with a large internal electrical field for modulation of tunnel transport can be achieved. Here we repot on recent advances in the vertical TFETs using the III-V NW/Si heterojunction with surroundinggate architecture and demonstrate steep-SS behavior and very low parasitic leakage current.