Seedlings of pine, infected with two different ectomycorrhizal fungi, Suillus bovinus (Fr.) 0. Kuntze and an unidentified isolate (BP), were exposed to various external Zn concentrations. An additional strain of S. bovinus, cultured on a Zn-enriched medium, was also used. The effect of mycorrhizal associations on Zn uptake and distribution within the plant was determined by AAS.The results show that nonmycorrhizal seedlings have the capability to control the uptake and translocation of Zn to the shoot until the external Zn concentration reaches a threshold level, where no limitation of uptake is possible. Excess Zn is accumulated in the root system to protect the shoot against toxic tissue concentrations. The effect of an ectomycorrhizal infection on Zn uptake and distribution depends on (1) the fungal species (2) the external concentration and (3) the Zn content of the fungal culture medium. Under conditions of low external Zn supply, especially a mycorrhizal infection with S. bovinus led to an increased Zn uptake in root and needles of Pinus sylvestris. Under high external conditions the mycobionts varied considerably in their capability to reduce the transport of Zn to the shoot. Only by an infection with S. bovinus the plant was able to maintain the shoot tissue concentration on a low level. This effect can be enhanced by pretreatment of S. bovinus with high Zn concentrations.