Background:
The lipid bilayer of the plasma membrane is impermeable to ions, yet
changes in the flux of ions across the cell membrane are critical regulatory events in cells. Because of
their regulatory roles in a range of physiological processes, such as electrical signaling in muscles and
neurons, to name a few, these proteins are one of the most important drug targets.
Objective:
This review mainly focused on the computational approaches for elucidating proteinprotein
interactions in cation channel signaling.
Discussion:
Due to continuously advanced facilities and technologies in computer sciences, the physical
contacts of macromolecules of channel structures have been virtually visualized. Indeed, techniques
like protein-protein docking, homology modeling, and molecular dynamics simulation are
valuable tools for predicting the protein complex and refining channels with unreleased structures.
Undoubtedly, these approaches will greatly expand the cation channel signaling research, thereby
speeding up structure-based drug design and discovery.
Conclusion:
We introduced a series of valuable computational tools for elucidating protein-protein
interactions in cation channel signaling, including molecular graphics, protein-protein docking, homology
modeling, and molecular dynamics simulation.